Performance Optimisation in an
Object-Oriented Database
Management System

Master Thesis

Christoph Zimmerli
<zimmerch@ethz.ch>

Prof. Dr. Moira C. Norrie
Alexandre de Spindler

Global Information Systems Group
Institute of Information Systems
Department of Computer Science
ETH Zurich

sth May 2009

.
Eidgenéssische Technische Hochschule Ziirich @ g I 0 b I S
Swiss Federal Institute of Technology Zurich

www.manaraa.com

Copyright © 2009 Global Information Systems Group.

www.manharaa.com

We should forget about small efficiencies, say about 97% of the
time: Premature optimization is the root of all evil. Yet we should not
pass up our opportunities in that critical 3%.

Donald Knuth

www.manharaa.com

www.manharaa.com

Abstract

OMS Avon is an object-oriented database management system developed in the Global In-
formation Systems (GlobIS) Group at ETH Zurich. Besides serving as a proof-of-concept for
the OM data model, the system’s aimed uses range from rapid prototyping to teaching.

Adequate performance plays a crucial role in the acceptance process of a software system.
Given the previously non-satisfying performance of OMS Avon, this thesis shows several
aspects of performance analysis and optimisation in an object database management system.
We first present a description of general techniques of performance analysis and optimisation.
Because of its poor performance, the existing storage engine based on db4o is subjected to a
redesign leading to a considerable performance increase. We also show the implementation
of B*-Trees as index structure for selection queries on attribute values and the associated
increase in query performance.

ol Lalu Zyl_ﬂbl

www.manharaa.com

Vi

www.manharaa.com

Contents

Introduction 1
11 DocumentStructureo 1
Analysing the Performance of a Complex System 3
21 Counting Method Executions 4
2.2 Measuring Method Execution Time, 6
23 Profiling 7
OMS Avon 9
31 TheOMDataModel 9
311 Collections 10
3.2 Associations ... 11
3.2 Avon Architecture 11
321 TheModellayer 12
3.22 TheStoragelayer L. 12
3.3 db4o ... 12
331 Querylinterfaces. L 12
3.3.2 Transparent Persistence and Activation 13
Accelerating Avon’s dbgo-based Storage Module 15
4.1 TheOMPerformanceTest i .. 16
4.2 Representing Data atthe Storagelayer. 16
421 TheMeta-Model 17
4.2.2 Representing Data—The Java-Approach 18
4.2.3 Representing Data — The dbgo-Approach 21
4.3 RedesigningExtents L oo 21
4.4 GettinglIndexingtoWork o oo 23
4.4 Indexingandlinterfaces oL 24
4.5 dbgo-awesome2.0. 25
4.6 Conclusions 26
Indexing in OMS Avon 29
51 ExampleQueries 29
5.1 Selection Queries by Attribute Valueso 29
5.1.2 Queries for Collection Membership 30
5.2 ImplementingaB*-Tree 30
5.21 Search. 31
vii

www.manaraa.com

viii CONTENTS

5.22 Insert 31

523 Delete. 31

52.4 KeysandValues 32

5.2.5 Testingthe Implementation. 32

5.3 Incorporating IndexingintoAvon L oL 33
531 ManagingIndicesonthe OM Layer 33

5.3.2 Index Maintenance with StorageEvents 34

533 TheComparisonIndexlInterface. 35

53.4 ModifyingtheQueryTree 36

5.4 Index Performance 37

6 Conclusions and Outlook 39
6.1 UnifyingChecking 39
6.2 Separating Typing and Classification in Indexing 40

6.3 Continuous Performance Testing 41
6.4 ASidenote on Implementing B*-Tree Deletion. 4

A Tables 43

www.manharaa.com

Introduction

The wish for ”good performance” comes up with nearly one hundred percent certainty during
every requirements elicitation process for a software system. While this aspect is certainly
crucial for commercial products, it also applies to an academic environment. If we want
people — and be it ”just” students who have fo — to use an application, it should not be a
waste of time in the sense that even the smallest use case takes a long time to complete.
When trying to push our implementation as proof-of-concept for a proposed model, having
acceptable performance is also desirable. Otherwise, people will discard our idea as “nice,
but obviously not really feasible” at best.

Unfortunately, most of the above actually applied to OMS Avon before this thesis — at least
when using the db4o-based storage implementation. Therefore the original task for this thesis
was to review the existing implementation of the db4o-based storage layer. After analysing
its weaknesses regarding performance, a better approach should be derived and implemented.

Having completed this original task in half of the time given for this thesis, a second topic
needed to be chosen. Going along with the first optimisation-related part, implementing
additional indexing in OMS Avon was the task of choice for the second half.

1.1 Document Structure

After this introduction, Chapter 2 will provide an overview over some principles of perform-
ance analysis and optimisation. Chapter 3 then introduces OMS Avon and its underlying
model. The work on the original topic of optimising the db4o-based storage implementation
is presented in Chapter 4. Following that is Chapter 5 about the second unit of work concern-
ing performance optimisation in OMS Avon through indexing. Finally, an overview over the
accomplishements and ideas for further development based on the work associated with this
thesis will be given in Chapter 6.

www.manaraa.com

2 1.1. DOCUMENT STRUCTURE

The source code presented in listings in this document will be written in Java. This is due
to the fact that OMS Avon is implemented in Java and hence most of the programming work
associated with this thesis was done in Java.

www.manharaa.com

Analysing the Performance of a
Complex System

Before actually starting the process of optimisation, it is crucial to know which parts of the
system should be optimised. While it may well be possible to gain some performance in
about every part of a complex system, there usually exist hot-spots where optimisation shows
a much greater influence than in other places.

Such a hot-spot is for instance a part of code that takes very long to execute. Let us look at
an example: Suppose we have a program that executes three methods. Two of those methods
take one second to execute each. The third one runs for 20 seconds. This leads to a total
execution time of 22 seconds for our small program. Let us assume that optimising any of
those three methods has no impact on the performance of the other two methods. In this
setting it is obvious that one will benefit the most from optimising the third method. If we
would work on the two one-second-calls, the best total execution time we could reach would
be 20 seconds (reducing those two calls to zero seconds each). Were we however able to
reduce the third method to zero, we would get an execution time of only two seconds!

The assumption made in the example above, that optimising one method has no impact
on other methods, often does not hold in complex systems. In particular since one of the
principles of object-oriented software construction is reusing software components. This
implies that it would make sense to asses how often certain pieces of code are executed when
running the program. Optimising a method, that is executed a hundred times during a run of
the program, to run one second faster will result in a total execution time that is one hundred
seconds smaller than before. Suppose we would instead optimise another method’s execution
time by two seconds. We could say that this optimisation is twice as good as the other one that
brought only an improvement of one second per execution. But if this second method is only
executed three times during one run of our program, these two seconds per execution will

www.manaraa.com

4 2.1. COUNTING METHOD EXECUTIONS

only result in a total speed-up of six seconds per program execution, instead of the hundred
seconds that could be achieved by optimising the first method.

These two small examples above show that the real hot-spots will be found in places that
a) take long to execute and b) are executed very often. The following sections of this chapter
describe methods and tools to identify such parts in a complex system. We will look at whole
methods in order to identify hot-spots. This is no limitation on granularity. After all, a method
could always be split up into several or merged together with others to adjust granularity.

2.1 Counting Method Executions
As stated above, the number of times a method is executed is one metric that is useful for
identifying hot-spots in a program. So let us have a look at how we can count the number of

times a method is executed.
Suppose we have a method someMethod as shown in Listing 2.1.

class Something {

public void someMethod () {
executeSomething () ;

Listing 2.1: Class Something containing a simple method someMethod.

Counting the number of executions of someMethod is simple and straight forward, as List-
ing 2.2 shows.

class Something {
public void someMethod () {

logger.logCall ()
executeSomething () ;

Listing 2.2: Logging calls to someMethod.

The call of 1logger.logCall () is supposed to increment the number of
executions we keep for someMethod. This can be accomplished in numerous ways such as
keeping a map of method name and execution count, writing a log file for later examination
or by storing the information in a database.

www.manaraa.com

CHAPTER 2. ANALYSING THE PERFORMANCE OF A COMPLEX SYSTEM 5

Using the idea just shown entails adding code to each method whose execution count one

is interested in. This may be acceptable, if one only wants the numbers for a small amount of
methods. If the number of calls of many methods is of interest, or one does not want to alter
the existing code to get those numbers, this idea is not an option.
The remedy to this dilemma can be found in proxy classes. The idea of a proxy class is
to provide the same interface, as the class whose method executions should be counted.
Listing 2.3 shows such a proxy class SomethingProxy that acts as a proxy for the class
Something. Proxies that record information about method calls, like SomethingProxy,
are generally called tracing proxies.

class SomethingProxy {
private something = new Something();

public void someMethod () {
logger.logCall () 8
something.someMethod () ;

Listing 2.3: A proxy class that logs a call and then forwards it.

As one can see from this small example, using proxies requires you to write such a proxy
class for each class whose methods you would like to trace. However, as we are working with
Java, we do not have to do that all by hand, because Java offers us something called Java
Dynamic Proxy . It enables us to create proxies for any class by providing all the interfaces
the proxy should implement, as well as an InvocationHandler. The latter allows us
to specify the actions to be carried out whenever a method is executed on the proxy object.
Implementing an InvocationHandler that handles method calls by always logging the
call before actually executing the method can be done as shown in Listing 2.4.

class LoggingInvocationHandler
implements InvocationHandler ({

private Object target;
public Object invoke (Object proxy, Method method,
Object[] args) throws Throwable ({

logger.logCall (method.getName ()) ;
return method.invoke (target, args);

Listing 2.4: An InvocationHandler for logging method calls before execution.

"http://java.sun.com/javase/6/docs/technotes/guides/reflection/proxy.html

www.manaraa.com

http://java.sun.com/javase/6/docs/technotes/guides/reflection/proxy.html

6 2.2. MEASURING METHOD EXECUTION TIME

2.2 Measuring Method Execution Time

The second metric useful for identifying hot-spots mentioned in the introduction of this
chapter is method execution time. Going back to our simple example in Listing 2.1, we
could measure the execution time of someMethod by starting a timer at the beginning of
that method, and stopping it at the end of the method (see Listing 2.5).

class Something {

public void someMethod () {
long start = System.nanoTime () ;
executeSomething () ;
long end = System.nanoTime () ;
long executionTime = end - start;

Listing 2.5: Measuring a method’s execution time.

The results of such time measurements are not always very useful. First, the execution time
of a method is not constant. It may vary from execution to execution. Second, methods
sometimes take less time to execute than can be measured. This can occur due to the fact
that System.nanoTime () actually cannot guarantee nanosecond accuracy, as this method
relies on a timer offered by the operating system. Therefore it can happen that we measure an
execution time of zero nanoseconds. It is however clear that executing this very method one
billion times will probably not take zero nanoseconds as well, as one could expect by naively
multiplying the time for one execution with one billion.

class SomethingTest ({
private static final int EXECUTION_COUNT = 1000;

public void testSomeMethod () {

long start = System.nanoTime () ;

for(int i = 0; i < EXECUTION_COUNT; i++) {
someMethod () ;

}

long end = System.nanoTime () ;

long totalExecutionTime = end - start;

long averageExecutionTime =
executionTime / EXECUTION_COUNT;

}

Listing 2.6: Executing a method several times and calculating the average execution time.

www.manaraa.com

CHAPTER 2. ANALYSING THE PERFORMANCE OF A COMPLEX SYSTEM 7

In order to overcome those two problems, it is a good idea to execute the method under test
a fixed number of times and measure the total time taken for all the executions. We then get
the average time for one method execution simply by dividing the total execution time by the
number of executions. This process is shown in Listing 2.6.

If all methods to be timed run long enough to get execution times greater than zero nano-
seconds and each method is executed often enough during the whole execution of the pro-
gram, the idea of proxies, and in particular the Java Dynamic Proxy introduced in Section
2.1, can be applied for measuring method execution time as well. We simply implement an
invocation handler similar to what is shown in Listing 2.7.

class LoggingInvocationHandler
implements InvocationHandler ({

private Object target;

public Object invoke (Object proxy, Method method,
Object[] args) throws Throwable ({
long start = System.nanoTime () ;
Object result = method.invoke (this.target, args);
long end = System.nanoTime () ;
long executionTime = end - start;

return result;

}

Listing 2.7: An InvocationHandler that measures the execution time of a method.

2.3 Profiling

As one can imagine, we are not the first people interested in performance analysis of software.
Therefore several tools exist to facilitate the job at hand. The action of analysing performance
in software is often called profiling. Programs to help with profiling are known as profilers.
A profiler automatically collects the data discussed in Section 2.1 and Section 2.2. Sometimes
it is necessary to compile the program with a special tool in order for the profiler to work. For
instance, to analyse a program with gprof, a free profiler that is part of the GNU Binutils 2,
the program must either be compiled or linked with an additional option set on the compiler
or linker.

For profilers on the Java platform, the Java Virtual Machine offers the JVM Tools Interface
(JVMTI). This interface allows profilers to register for events like method calls, class loading
or unloading and entering or leaving threads.

nttp://www.gnu.org/software/binutils/

www.manaraa.com

http://www.gnu.org/software/binutils/

8 2.3. PROFILING

During the work of this thesis we used JProbe 3 to analyse the performance of a Java
program. JProbe automatically combines the two metrics of counting method executions
and measuring the time per execution. The visual presentation of the results then shows the
critical path, which identifies the profiled application’s main path of execution.

I N N N N N N N N N e

[callTree | car Graph

Fiter Methods |* || (555 1 5s5]

Name | Mum Calls I Cumulative Time I Method Time ¥ | Avg Cumulative Time I Auwg Method Tim
com.dbdo.query. Query executed) FEER 263 63 0 Q
com.dbdo.query. Query. descendiString) 11'161 51 51 0

com.dbdo. activation. Activator, activatelActivationPurpose) 1'882 44 43 o

com. dbdo.query. Query, constraini Object) 7242 36 36 1]

ch.ethz. globis.avon. omnew. crud. Object TypelsAs. getDirectSuper T, 4 122 34 30
com.db4o.ObjectCantainer . commit{) 1 33 33 33 M
[i] 1l] [l]

Figure 2.1: A screen-shot of JProbe’s performance analysis.

Figure 2.1 shows a small example of such results of a performance analysis. In the bottom
part of the screen, JProbe shows a table containing the number of calls and the total execution
time per method. Above that table there is the visual representation of the program’s call
graph. Each node represents a method. The lines between the nodes show where the method
was called from (incoming lines from the left) and what other methods it called (outgoing
lines to the right).

The boxes representing methods are coloured by cumulative time. Cumulative time is the sum
of time spent in a method and all its callees during the program’s whole execution. Methods
with highest cumulative time are shown in red. The farther away a method is from the highest
value, the more grey its colour is. This colour-representation allows a quick visual assessment
of the critical path and therefore the parts of the program that should be optimised first.

Shttp://www.quest .com/jprobe/

www.manharaa.com

http://www.quest.com/jprobe/

OMS Avon

OMS Avon is the latest incarnation in the history of implementations of the OM Datamodel.
Previous versions were OMS Pro, OMS/Java and eOMS, all built by the Global Information
Systems group at ETH Zurich !

This chapter first presents the base for Avon, the OM data model, in Section 3.1. It then
discusses Avon’s architecture in Section 3.2. Finally, Section 3.3 will provide a look at db4o,
the key ingredient of the storage implementation discussed in the upcoming Chapter 4.

3.1 The OM Data Model

The OM data model is an extended Entity-Relationship model for object-oriented data man-
agement. One of its key features is the distinction between typing and classification by using
a two-layer model. It also treats collections and binary associations as first-order concepts.
Together, these features allow expressing multiple inheritance, multiple instantiation and mul-
tiple classification.

In order to represent the two-level model and other features, OM has its own graphical
representation. An example of such a diagram is shown in Figure 3.1. It depicts a part of
OM’s core meta-model and will be discussed in parts in the following.

As in other object-oriented models, a type also declares a set of attributes and methods
in OM. Each object has at least one object type defining its behaviour. In Figure 3.1 these
object types are represented by the collection ObjectTypes, whose entries are of type
objectType.

"Nttp://www.globis.ethz.ch/research/oms

www.manaraa.com

http://www.globis.ethz.ch/research/oms

10 3.1. THE OM DATA MODEL

association
Associations
object g
Objects <~ _ classffication
Classifications

objectType

ObjectTypes L
-

collection
15} 0:* /_\ 1
©) HasMemberType as 4 Collections

\/—\—-4”
1
——-—-- >
R | ®

BN
]
g Types
S _
I baseType |-~
BaseTypes

Figure 3.1: Graphical representation of a part of OM’s core meta-model.

Object types can form inheritance hierarchies like in most other object-oriented models. But
in contrast to many of these models, OM supports multiple inheritance by allowing a type to
have several supertypes.

Besides object types, there exist also base types, illustrated by the collection BaseTypes
with members of type baseType. Examples for such base types are strings, integers or
booleans.

Throughout its lifetime, an object can gain new and lose existing types. The operation of
gaining a type is called dress, while losing a type is known as strip. This concept of having
several types at the same time is known as multiple instantiation.

Classification allows grouping objects semantically with the help of the types defined in
the type layer. This grouping of objects is achieved by the use of collections. While being in
a collection, an object participates in the role defined by the collection’s membertype.
Allowing an object to be member of several collections at the same time enables it particip-
ating in multiple roles at the same time, which is known as multiple classification.

3.1.1 Collections

The graphical representation of a collection is a rectangular box. Figure 3.1 consists mainly
of collections and relations between them. The text on the foreground rectangle is the col-
lection’s name. The grey-shaded rectangle in the background shows the type the objects in a
collection have. It is known as the collection’s membertype. As root element in the figure, we
have the collection Ob ject s containing members of type ob ject, i.e. all objects.

OM also enables us to express constraints over collections. Figure 3.1 depicts on the
left that the collection Types has two subcollections: ObjectTypes and BaseTypes.
Between those two there exists the partition constraint. This means that a type can either

www.manaraa.com

CHAPTER 3. OMS AVON 1

be an object type or a base type, but not both at the same time. Besides partition, OM also
supports intersection, disjoint and cover.

OM distinguishes four different kinds of collections — one for each combination of allowing
duplicates and knowing an order:

 Set: No duplicates allowed, entries have no order.
* Bag: Duplicates allowed, entries have no order.
* Sequence: Duplicates allowed, entries are ordered.

* Ranking: No duplicates allowed, entries are ordered.

3.1.2 Associations

Associations are used to relate objects in one collection to objects in another collection. In
Figure 3.1, such a relation is shown between the collections Collections and Types.
Represented by the oval shape and carrying its name HasMemberType, this association
models the concept of collection membertypes introduced above.

An association also defines cardinality constraints. In our example, the (1:«) states that
each collection must have at least one membertype. On the other hand, a type can be the
membertype of zero or more collections, indicated by (0: %) .

3.2 Avon Architecture

OMS Avon is implemented in Java. So far, it consists of two major layers as depicted in
Figure 3.2. Each of these layers will be introduced in the following sections.

~
J/

Model Layer

Constraint
Management

—

Object Model Event Model OML

- ™\
Storage Layer
Storage Index Transaction Query Engine
Management Management Management Y ENg

Storage Provider

—

Figure 3.2: High-level view of Avon’s architecture.

www.manaraa.com

12 3.3. DB40O

3.2.1 The Model Layer

The model layer implements the OM data model discussed in Section 3.1. The implement-
ation provides a generic Java abstraction for OM objects called OMOb ject. It allows the
creation and manipulation of such OM concepts as object types, collections and associations.
Java, the implementation language, itself does not support all OM concepts, such as multiple
inheritance and multiple instantiation. Therefore, OMOb ject provides this functionality, for
instance through its methods dress and strip.

It is the model layer’s responsibility to manage the constraints. This includes for instance
checking that at least one of an object’s types corresponds to the membertype when adding
an object to a collection. OML, a modeling and query language for the data stored in Avon is
also part of this layer.

3.2.2 The Storage Layer

This layer’s task consists in mapping the data of the model layer to an internal representation
that can then be stored persistently. Details of this internal representation will be discussed
in Section 4.2. The storage layer also manages indices and transactions and provides a query
engine.

In order to make the data persistent, the storage provider employs an external persistence
provider. Because of its modular design, it is possible to implement different storage pro-
viders, each using a different persistence provider. As of writing this thesis, there exist three
such implementations:

e In-Memory
This implementation just maps the objects to plain Java data structures. It does not
provide any actual persistence — if the application shuts down, all data is lost.
It is, obviously, the fastest performing implementation.

* Berkeley DB
For using Berkeley DB as a persistence provider, this implementation maps the Java
object structure to a relational model.

* dbdo
Because db4o is an object database (see Section 3.3), this implementation can store and
retrieve normal Java objects to and from the database.

3.3 dbgo

dbdo 2 is an open source object database that runs on both Java and .NET. It supports storing
and retrieving arbitrary object graphs including collections.

3.3.1 Query Interfaces

To retrieve the stored data, db4o supports four query interfaces.

2http ://www.dbdo.com

www.manaraa.com

http://www.db4o.com

CHAPTER 3. OMS AVON 13

Query-By-Example (QBE) 1In order to use QBE, the user provides a template object. db4o
will then return all of the objects in the database which match all non-default field values in
the template. This is done via reflection on all of the fields and building a query expression
where all non-default-value fields are combined with and expressions. Default values are
what the programming language initialises new variables with, for example 0 for integers
and null for references.

Using QBE, one can only express simple queries (no or or not clauses and the like) and not
constrain on values equal to the default-value for that field type.

Native Queries (NQ) Native Queries are promoted by db4o as the main query interface
and to be absolutely type-safe, compile-time checked and refactorable. These claims all hold
because NQ are — as the name implies — native to the programming language.

Creating a NQ means implementing a Predicate containing a match method with
boolean return value. Inside this method, any program code — including method calls — can
be executed to decide, whether a given candidate object matches this query. All objects in the
database, for which the mat ch method returns t rue will be part of the query result.

LINQ (Language Integrated Query, .NET only) For LINQ the same properties hold, as for
NQ. However, LINQ is not an invention of db4o, but a feature of .NET itself. db4o simply
provides the right interface to make its data accessible through LINQ.

SODA (Simple Object Database Access) SODA allows the user to build query graphs by
hand using constraints like greater, smaller, equal, and, or and methods for string compar-
ison. It is also possible to sort the results of a SODA query. All these constraints have to be
made to object field values — SODA does not allow method calls as part of the query. As the
names of these fields are provided as strings, SODA queries are not as easily refactorable as
NQ.

All other forms of queries will internally be translated to SODA for execution. db4o knows
several optimisation possibilities for this translation. But because it cannot optimise all types
of queries (yet), certain queries will be executed in a slow unoptimised manner.

3.3.2 Transparent Persistence and Activation

One of db4o’s goals is to hide the use of the database as much as possible from the application
logic. Transparent Persistence (TP) is a key element for this purpose. It allows registering an
object once with the database through a call to db4o’s st ore method. Any further changes
to the object will then be observed and automatically persisted by the database. TP is very
useful for the implementation of Avon’s storage layer using db4o as persistence provider.
It enables creating an object at the storage layer, registering it with the database and then
passing it to the upper layer for modification, without actively having to care for occurring
changes on the object.

In order to enable TP, the object’s class has to implement db4o’s Activatable interface.
This can either be done by hand or through instrumentation — either at compile time or when
the class is loaded by the class loader.

www.manaraa.com

14 3.3. DB40O

The same Activatable interface plays also a role in hiding the fact that an object has
been retrieved from the database. As mentioned before, db4o can store arbitrary object
graphs. When querying for the root object of a large graph, db4o does not know, whether
the user is just interested in this root object, or if he will traverse the whole graph from there.
Every object the user wishes to access has to be instantiated — or activated — by db4o. Because
this process is quite time-consuming, it would be a bad idea to always fully activate query
results. The user can instruct db4o to always activate results to a fixed depth and / or handle
activation by hand. However, this process of activating by hand does not adhere to the goal
of hiding the use of a database.

Using Transparent Activation (TA), the activation process can be hidden from the user. TA

will activate query results on demand and as lazily as possible. Making a class TA-aware, and
therefore enabling lazily activating it, is also accomplished by implementing Activatable
(TP includes TA).
Retrieving a query result, db4o will activate the graph until it encounters an object imple-
menting Activatable. This object will be lazily activated on demand. This means that
TA-unaware objects will also work in a TA-enabled environment without additional care for
their activation.

www.manaraa.com

Accelerating Avon’s dbgo-based
Storage Module

As discussed in Chapter 3, OMS Avon has the ability to use different implementations of the
storage layer. Such an implementation — with the exception of the pure in-memory imple-
mentation — uses an external persistence provider. One of the existing implementations uses
db4o ! to persist the application’s data.

While being able to pass all the necessary test-cases correctly, the db4o-based implement-
ation was not actually considered usable because of its poor performance.
For instance, a small test-case called OMPerformanceTest, that operates on Avon’s
model-layer, took nearly seven seconds to execute. For comparison: The same test would
run in one tenth of a second using the in-memory implementation.

While it is obviously unrealistic to expect the same execution time as with in-memory
when using a DBMS ? to store and retrieve data, it was desirable to increase the performance
to a level that could be considered usable for real-life use-cases.

The upcoming sections of this chapter will describe the analysis and decisions made dur-
ing the task of improving the performance of the db4o-based storage module and show the
resulting performance gains.

During this, the db4o-based implementation’s state before the work associated with this thesis
will be called db4o-old. In contrast, the optimised version resulting from the described work
will be called db4o-awesome.

'nttp://www.dbdo.com/
Database Management System

15

www.manaraa.com

http://www.db4o.com/

16 4.1. THE OMPERFORMANCETEST

4.1 The OMPerformanceTest

Before discussing the optimisation process itself, let us first have a look at what will serve as
a benchmark for measuring improvements.

The OMPerformanceTest is a small use case that consists of 29 subtasks. For each of
these subtasks the test measures the execution time. Table A.1 shows the subtasks as well as
the measured times when executing the test with db4o-old. The numbers for db4o-old from
Table A.1 are also plotted in Figure 4.1.

1600 -

=#=db4o-old

1400

1200

=
o
o
o

A
. |
R VI AY
SNV LV L

0 < —

Execution Time [ms]

(2]

o

o
———

Subtasks

Figure 4.1: A plot of the numbers for db4o-old in Table A.1.

It is clearly visible that operations involving the creation of collections have the worst per-
formance: Each of these three operations takes more than one second to execute. Also very
long take the creation of object types and dressing an object with such a type (both around
half a second). For all these operations several checks are carried out by Avon to ensure the
existence of all objects involved and that they all have the correct types. These checks of-
ten are conducted by accessing information from the storage layer, which then translates to
database accesses.

On the other hand, adding members to extents takes very little time because it is a pure Java-
operation not involving any queries to the database.

4.2 Representing Data at the Storage Layer

The concepts of OM, as implemented in Avon’s model layer, have to be mapped to another
model that is better suited to address the requirements of the storage layer. The meta-model

www.manaraa.com

CHAPTER 4. ACCELERATING AVON'’S DB40O-BASED STORAGE MODULE 17

derived for that purpose will be discussed in Section 4.2.1. Then, Section 4.2.2 shows the
first translation of that meta-model to a usual Java model. Finally, the problems of the Java
model when used with db4o will be highlighted and an improved model for the db4o-setting
will be demonstrated in Section 4.2.3.

4.2.1 The Meta-Model

As we know from OM, objects can be dressed with types. The reverse operation is stripping a
type from an object. Such a type instance is represented by an InformationUnit, which
is, in fact, just an array of attribute values. Its meaning is described by a TypeDescriptor
specifying the types of each attribute by position.

For illustration of the concepts of information unit and type descriptor, we would like to
model a type person that consists of a name and a birthdate. The name itself should consist
of a first and a last name, both of type string. The birthdate should consist of three integers:
A year, a month and a day.

Defining these types and creating an instance of our person type named “Max Payne” and
born on March 21, 1972 leads to the structure depicted in Figure 4.2.

On the left we have a PersonUnit. Its descriptor, the PersonDescriptor, tells us, that
the unit contains two attribute values: One described by a NameDescriptor at position 0
and one described by a DateDescriptor at position 1. As we can see, the PersonUnit
isin fact linked to a NameUnit and aDateUnit thatin turn are each linked to the respective
descriptor. These descriptors tell us, that a name is made up of two values of type String
(that would be the first and the last name) and that a date consists of three values of type
int (year, month and day). The units themselves then contain the values described by these
descriptors.

On the right side of the figure, we see that for a type descriptor there is also an information
unit. These units contain as first value the type’s name and as second value its attribute types.
The units are linked with the same identifier as the type descriptor (eg. oid1).

= = [0: String, oid1
[oid3 }—— NameDescriptor }-—-l 1 String]
[06: "personType",

PersonTypeUnit 1: [0: NameType,

0id5 |— NameuUnit 1: DateType]]
0id3
PersonUnit
[0: 1972, [0: "nameType"
0id4 |— DateUnit | e 3, NameTypeUnit 1: [0: String,
2: 211 1: Stringll
5 [0: NameDescriptor,
gersonbesciipior 1: DateDescriptor] m
[0: int,
[oid1] [oid6 }— DateDescriptor }— 1: int, [0: "dateType",
2: int] f18= 11O P m 4
DateTypeUnit 1: int.
2easiintzll

Figure 4.2: Example for the use of type descriptors and information units.

The same concept holds for an Extent. Extents are the representation of collections on
the storage layer. An Extent is therefore just a collection of values. The semantics are again

www.manaraa.com

18 4.2. REPRESENTING DATA AT THE STORAGE LAYER

given by a TypeDescriptor. Asthey have different properties than objects, extents are ac-
tually described by a sub-type of TypeDescriptor called ExtentTypeDescriptor,
while object type instances are described by an Ob jectTypeDescriptor.

Object InformationUnit |¢

attributes

Identifier TypeDescriptor [<K>—— Value

| Extent |¢

Figure 4.3: Data model at the storage layer.

Figure 4.3 shows the storage layer’s meta-model with the relations between objects, ex-
tents, information units and type descriptors. The actual Value stored in an Extent or
InformationUnit can be one of the following:

* Identifier pointing to an Object.
* Identifier pointing to an Extent.
* Basic value (String, int, boolean, ...).

Instances of Object, TypeDescriptor and Extent areidentified by an Identifier.
Most of the time only these Identifier instances are given from the storage layer up to
the model layer while the other concepts stay encapsulated in the storage layer.

4.2.2 Representing Data — The Java-Approach

When implementing the meta-model in Figure 4.3 in Java, the result for db4o-old looked
like Figure 4.4. From the viewpoint of a Java developer with knowledge of object-oriented
software design, this is in fact a nice and straight-forward way of implementing the meta-
model.

The question now is, whether the implementation is well-suited when used in combination
with db4o. As mentioned in Section 3.3, db4o is well capable of storing any object graph
created in Java. The problems — or better, inefficiencies — arise when starting to write queries
accessing the data stored in db4o.

Assume the query shown in Listing 4.1. The navigation path in Java, and hence the access
path for SODA queries in db4o, will be from StorageObject to InformationUnit to
InformationUnitElement.

www.manaraa.com

CHAPTER 4. ACCELERATING AVON'’S DB40O-BASED STORAGE MODULE 19

StorageObject

identifier : Identifier

extents : Set

units : Set

ExtentValueHandle InformationUnit InformationUnitElement

identifier : Identifier identifier : Identifier unit : InformationUnit
type : TypeDescriptor type : TypeDescriptor position : int
objects : List elements : InformationUnitElement[] value : Object

Figure 4.4: Implementation of the data model in db4o-old.

Give me all objects that are of type T
and have at attribute position P
the value X.

Listing 4.1: Simple query for objects by type and attribute value.

The fields through which the query will descend are StorageObject.units and
InformationUnit.elements, of which the former is a Set and the latter an Array.
While db4o supports queries on collections and arrays, there are three issues encountered
while analysing db4o-old.

First, queries on collections and arrays are slow, just due to the way they are processed
by db4o. The second issue is writing queries for collections and arrays. It is possible to
write SODA for those field types, but it can be very hard — or not very intuitive. The people
implementing db4o-old were not able to find working SODA expressions for all queries that
had to be implemented. For the left over cases they resorted to using Native Queries.

Native Queries are not per se something bad that should be avoided by all means. As we
have seen in Section 3.3.1, they provide more programming language integration and safety
than SODA as all of the field names used in the query are written as Java expressions and
therefore statically checked at compile time. But we also mentioned that db4o’s internal
translation from Native Queries to SODA can turn out unoptimised in which case query exe-
cution will take longer.

Therefore, only if we are able to write our query in SODA, can we be sure that it will always
be executed in the fastest way possible.

class Person {
String name;
Set<String> phoneNumbers;

Listing 4.2: Class Person containing a name and a collection of phone numbers.

www.manaraa.com

20 4.2. REPRESENTING DATA AT THE STORAGE LAYER

The third issue mentioned above is about indexing. In db4o, indices are created on fields
of classes. If we for instance have a class Person as shown in Listing 4.2, we would tell
db4o to index the name field of that class by adding the code shown in Listing 4.3 to our db4o
configuration.

Db4o.configure () .objectClass (Person.class)
.objectField () . indexed (true) ;

Listing 4.3: Configuring db4o to index the name field of class Person.

There is one limitation though: db4o cannot index the elements of a collection or an array.
Therefore trying to index the phoneNumber field of our Person class as shown in Listing
4.4, will not bring any benefits — however, db4o will not complain if we try to do so.

Db4o.configure () .objectClass (Person.class)
.objectField () . indexed (true) ;

Listing 4.4: Configuring db4o to index the phoneNumbers field of class Person.

What we could do instead, is create our own class of entry for the phone number collection
(Listing 4.5).

class PhoneNumber ({
String number;

Listing 4.5: A wrapper class for a phone number.

Changing the type of Person.phoneNumbers from Set<String> to
Set<PhoneNumber> will then allow us to index the field PhoneNumber.number
(Listing 4.6). Thereby, queries on phone numbers stored in the collection of a Person
instance will profit to some degree from that index. However, this index will contain all
instances of PhoneNumber, and not just those in the collection of the current Person
object.

class Person {
String name;
Set<PhoneNumber> phoneNumbers;

}

Listing 4.6: Class Person containing a name and a collection of phone numbers — now
represented by PhoneNumber instances.

Having identified the three issues of slow and unintuitive queries as well as lacking index-
ing on collections and arrays, we are now prepared to derive an optimised implementation of
the meta-model that’s better suited for the db4o-environment.

www.manaraa.com

CHAPTER 4. ACCELERATING AVON'’S DB40O-BASED STORAGE MODULE 21

4.2.3 Representing Data — The dbgo-Approach

As discussed in Section 4.2.2, the main performance problems in db4o-old seemed to be
arising from issues around collections and arrays. The obvious countermeasure is to get rid
of all collections and arrays. Luckily, there is a way to do so, which consists of substitut-
ing a collection of children in the parent object with a parent-reference in the child. The
parent object then no longer knows all its children, but every child knows its parent. Apply-
ing this approach to the references between StorageObject, InformationUnit and
InformationUnitElement — leaving the association between StorageObject and
ExtentValueHandle as is for the moment — leads us to the new implementation shown
in Figure 4.5.

StorageObject
identifier : Identifier
extents : Set
ExtentValueHandle InformationUnit InformationUnitElement
identifier : Identifier identifier : Identifier unit : InformationUnit
type : TypeDescriptor type : TypeDescriptor position : int
objects : List object : Identifier value : Object

Figure 4.5: Redesigned implementation of the data model in db4o-awesome.

As one can see from that Figure, the access path has been reverted in comparison to Figure
4.4: We now navigate from InformationUnitElement upto StorageObject.

But since we no longer have any arrays or collections along that path, it is straight forward to
write SODA expressions for all queries.

Having implemented the improved design from Figure 4.5 and having rewritten all queries
to SODA brings us to db4o-awesome 1.0. The resulting performance achieved when running
OMPerformanceTest with this implmementation is shown in Table A.1 and Figure 4.6.
The results show that getting rid of all collections and arrays and rewriting all queries to
SODA resulted in a total execution time that is only about 50% of what we had in db4o-old.
These improvements were achieved at every subtask of the test, which indicates that every
operation on the model layer seems to profit from the changes we made at the storage layer.

4.3 Redesigning Extents

As mentioned in Section 4.2.3, we spared the association between StorageObject and
ExtentValueHandle from changes for the time being. Let us now see, if we can apply
the lessons learned during the previous sections to that association.

The association in question is actually an M:N relationship: Each StorageObject can be
part of zero to N extents, while each ExtentValueHandle can contain zero to M objects.
That is why we have collections in both of the classes.

www.manaraa.com

22 4.3. REDESIGNING EXTENTS

1600

==db4o-old
~db4o-awesome 1.0

1400 |

1200

[
o
o
o

800

Execution Time [ms]

&

AV
W

3
s]
T —
| et
~——
T
x______
|

200

Subtasks

Figure 4.6: A plot of the numbers for db4o-old and awesome 1.0 in Table A.1.

Sticking to our mantra of getting rid of collections and arrays to improve performance, we
would come up with a new design as shown in Figure 4.7. Clearly, this is exactly how one
would represent such an M:N relationship in a relational database.

-dEXt;Ptva::eP:-ndle gtbjict:xxttent:lATsu:ah;n StorageObject

ljaentitier . laentitrier exient : entvaiueHrandlie s e . e

objects : List object : Obiject identifier : Identifier
—— —————————— —

Figure 4.7: Redesign of the association between StorageOject and

ExtentValueHandle to avoid the use of collections.

To see how the new design stacked up against the old version with the collections, a test suite
was implemented. It would first create one thousand objects and a hundred extents and then
randomly put objects into extents and also put some extents into other extents.

After that, it would run the queries of contains, containsAll and size on the extents,
as well as add objects to and remove objects from extents and clear extents from all content.

The results gained from running this test suite revealed the following points:

o Insertion of objects into extents is faster using the new design.
This is due to the fact, that — using the old design — for every insertion of one object
into an extent during the tests, the whole extent with its collection had to be retrieved

oL fyl_llsl

www.manharaa.com

CHAPTER 4. ACCELERATING AVON'’S DB40O-BASED STORAGE MODULE 23

from db4o, then the object was added to the collection and in the end the whole extent
was written back to the database.

In contrary to that, inserting one object into an extent using the new design translates
to creating a new instance of ObjectExtentAssociation and storing it in the
database — which is clearly the smaller effort.

* Queries like contains and size take less time to execute on the old design.
Here the collection pays off, because it’s the only object that needs to be retrieved from
the database. Once we have the collection, it will answer our queries, because it already
supports these operations.
Using the new design however means, that we have to inspect several instances of
ObjectExtentAssociation looking for the object(s) in question.
It is also possible, that once the collection was retrieved during one query, it still is
available in db4o’s cache when the next query is evaluated on the same collection, as
the database was not closed after each query.

* Configuring the right field indices in db4o results in big performance gains.
Setting up indexing, especially for the new collection-less design, has brought a speed-
up of factor ten for the execution of the whole test suite.

Considering the first two points in combination with the aspect of OMS Avon being a read-
mostly system, the conclusion of these tests with both designs was to stick with the old col-
lection version. This way, the queries, who are dominating insertions, would run quicker.
The last point concerning indexing will be the next section’s topic.

4.4 Getting Indexing to Work

As mentioned in Section 4.2.2, collections and arrays cannot be indexed with db4o. After
getting rid of those two constructs with the redesign in Section 4.2.3, indexing should now be
possible on all the fields used in the SODA access path.

public Query sampleQuery (TypeDescriptor type, int position,
Object value) {
Query query = this.db.query();
query.constrain (InformationUnitElement.class) ;

query.descend () .constrain (position);
query.descend () .constrain (value) ;
query.descend () .descend () .constrain (type);
Query objectQuery =

query.descend () .descend () 8

return objectQuery;

}

Listing 4.7: SODA query to retrieve all objects of given type that have at given attribute
position a given value.

www.manaraa.com

24 4.4. GETTING INDEXING TO WORK

Let us go back to the query in Listing 4.1 that we already discussed during Section 4.2.2.
Expressing this query in SODA will result in what is shown in Listing 4.7.
This shows quite nicely which fields we have to index to accelerate the query — namely
all the fields that are part of descend calls. In our example, these fields would be
position,valueandunit ofclass InformationUnitElement and the fields type
and object of class InformationUnit.

However, indexing all the fields used in all the SODA queries did not result in the expected
performance increase at first. Investigations using db4o’s diagnostics possibilities showed,
that most of the indices were in fact never even created.

4.4.1 Indexing and Interfaces

As mentioned at the end of Section 4.2.1, the communication between storage and model
layer is largely based on identifiers. In fact, there is a whole type hierarchy of identifiers
defined by several interfaces in Avon. As it is common and good practice, every field or
variable that was supposed to hold an instance of such an identifier was declared to be of the
interface type. This principle, known as programming against interfaces, is shown in Listing
4.8: Event though we know in class StorageOb ject, that the instance stored in the field
identifier will be of type IdentifierImpl, we declare it to be of the interface type
Identifier.

interface Identifier ({
int getId();

class IdentifierImpl implements Identifier {
private int id;

int getId() {
return this.id;

class StorageObject {
Identifier identifier;

Listing 4.8: An example for programming against interfaces.

Suppose we want to query for instances of StorageObject by a given Identifier.
Listing 4.9 shows a query that will produce these results. For shortening this query’s exe-
cution time, we would like to index the identifier field of class StorageObject. In
order to create this index, we add the line shown in Listing 4.10 to our db4o configuration
code.

www.manaraa.com

CHAPTER 4. ACCELERATING AVON'’S DB40O-BASED STORAGE MODULE 25

public ObjectSet storageObjectById(Identifier identifier) {
Query query = db.query();
query.constrain (StorageObject.class) ;
query.descend () .constrain(identifier);
return query.execute();

Listing 4.9: Query for StorageObject instance by given Identifier.

config.objectClass (StorageObject.class)
.objectField () . indexed (true) ;

Listing 4.10: Indexing field identifier of class StorageObject.

Even though db4o does not complain when we add this index, it will in fact never be created.
The problem is, that the field we are telling db4o to index, has the declared type of an inter-
face. And as you can see from the definition of the interface Tdentifier in Listing 4.8, it
contains absolutely nothing that could be indexed.

If we really want to index the identifier field of our class StorageObject, we have
to change its declared type to IdentifierImpl (Listing 4.11). Only then will the index
declared in Listing 4.10 be created.

class StorageObject {
IdentifierImpl identifier;

Listing 4.11: Changing field type from interface to implementation.

We then also have to change the signature of st orageObjectById in Listing 4.9 to accept
a parameter of type IdentifierImpl instead of Identifier. After completing this
refactoring, our query can finally benefit from the indexed field in StorageObject.

4.5 dbgo-awesome 2.0

Turning on all the useful indices and applying the findings described in the previous section
lead to version 2.0 of the db4o-awesome implementation.

As you can see from Table A.1 and Figure 4.8, the correct configuration of indexing really
paid off. The execution time of each of OMPerformanceTest’s steps has again been
cut by 50% compared to db4o-awesome 1.0. This results in an overall execution time of the
whole test case of just below 1.3 seconds as compared to 6.7 seconds achieved with db4o-old.
While this is still ten times larger than the result from the in-memory implementation, it is
only a fifth of the time posted by db4o-old prior to all the optimisations described in this
chapter. In other words: The redesign described in Section 4.2.3 and the changes imple-
mented to enable indexing where necessary as described in Section 4.4.1 resulted in a total
performance gain of 500%.

www.manaraa.com

26 4.6. CONCLUSIONS

1600 o

=4=dbdo-old
1400 +—{ " dbdo-awesome 1.0
=i&=dbdo-awesome 2.0
1200 ;
E'moo }
v
E /
= 800]
[=]
B
E) /'\ // ’\ / \
400 - K { \
LA N A N JIA

Subtasks

Figure 4.8: A plot of the numbers in Table A.1.

It is noteworthy that all the numbers presented in Table A.1 were obtained with db4o ver-
sion 7.4.71. Running the same test again later, after switching to db4o version 7.8.82 to profit
from bugfixes, gives a different picture. While the ratios between the three versions old, awe-
some 1.0 and 2.0 are about the same, the absolute values have gone up considerably, as Table
4.1 shows.

Execution Time [ms]

db4o Version old awesome 1.0 awesome 2.0
7.4.71 6789 3512 1283
7.8.82 ~9000 ~4600 ~2700

Table 4.1: Execution times measured by OMPerformanceTest using different db4o ver-
sions.

4.6 Conclusions

Version 2.0 of db4o-awesome marks the final stage of optimisations in this work. Fur-
ther optimisations with options provided by db4o would possible. For instance, a
CachingIoAdapter could bring additional performance gains by caching I/O operations.
Or, index access time could be decreased with the right parameters for B-Tree height and
node size.

Ol Ll Zyl_ﬂbl

www.manharaa.com

CHAPTER 4. ACCELERATING AVON'’S DB40O-BASED STORAGE MODULE 27

However, it is not the idea of Avon’s architecture to perform caching at the storage layer.

Such caches should be implemented on the upper layers. Thus, Avon will profit from the
caches, no matter what implementation of the storage layer is used.
The options mentioned for B-Tree tuning, as well as other options available in db4o, only
increase performance if the values used are very well tailored to the system (processor, chip-
set, memory) the application is executed on. Optimising these settings for one system could
therefore result in performance degradation on other hardware.

While discussing the performance of db4o-old in Section 4.1 we highlighted that operations

involving the creation of collections had the highest execution times. With db4o-awesome 2.0
this is still the case. In fact, the proportions between the quicker and the slower operations
have not changed. It merely looks as if we had just run the test on faster hardware, which
lead to a decrease of execution time for all operations.
We mentioned the presence of several checking and assertion mechanisms in Avon as pos-
sible cause for the slower operations. The vast part of these mechanisms is still in place in
dbdo-awesome. Their execution has just been sped up by the more efficient underlying imple-
mentation. This means that inspecting all the checking and asserting could identify additional
optimisation potential to increase the performance of slow operations — like collection cre-
ation — even further.

www.manaraa.com

28 4.6. CONCLUSIONS

www.manharaa.com

Indexing in OMS Avon

Section 4.4 discussed enabling indexing in db4o and the performance gains associated with
this step. Even though we have now done everything possible on this level, there still is room
for further improvements through indexing. However, this additional indexing cannot be done
by db4o itself. This is due to the fact that our data model at the storage layer is too general to
further leverage db4o’s indexing capabilites.

At the beginning of this chapter some queries that would benefit from additional indices
will be discussed in Section 5.1. Section 5.2 will show the implementation of an index struc-
ture to address one of the queries identified in Section 5.1. Section 5.3 then discusses the
index structure’s incorporation into OMS Avon. Finally, Section 5.4 presents the results
achieved with this new index structure.

5.1 Example Queries

In this section, we have a look at two types of queries that could be executed faster with the
support of additional indices.

5.1.1 Selection Queries by Attribute Values

We have already seen a case of a selection query by attribute value in Listing 4.1. Actually,
as in Avon all objects are always part of some collection, in reality there is one additional
constraint concerning an Extent on this kind of queries. Therefore the real world example
of such an attribute query would be what is shown in Listing 5.1.

In order to answer such a query, Avon would retrieve the extent, iterate over its members
and check for each, if it matched the query. With the array- and collection-less data model
presented in Section 4.2.3, our access path for this matching starts at the attribute value and
from there goes up to the object. Assuming that on average there are more attribute values

29

www.manaraa.com

30 5.2. IMPLEMENTING A B*-TREE

Give me all objects in Extent E
that are of type T

and have at attribute position P
the value X.

Listing 5.1: Full query for objects by extent, type and attribute value.

than objects in an Avon database, it would however be more discriminating on the size of the
result candidate set, if we could start at the object and descend to the attribute.

The index on attribute values configured in db4o certainly helps a lot here to keep access time
at a reasonable level. But this index contains all attribute values of all objects in the database.
Presumably, this means that this index will very grow large.

Examining the query in Listing 5.1 we see that in fact we are only interested in the attribute
values of objects in a given extent and of a given type. Therefore the optimal index for such
a query would contain all attribute values of attributes at given position, belonging to objects
of given type that are in given extent.

Such indices on attribute values are usually implemented with B*-Trees in a DBMS. The
implementation of such an index will be the topic of the upcoming Section 5.2.

5.1.2 Queries for Collection Membership

A second example for queries that could benefit from additional indexing in Avon are queries
for collection membership. Such a query is for instance the one shown in Listing 5.2. The
exisiting implementation for such queries in Avon is quite simple — it compares all entries of
the first extent with all entries in the second to find matches (also known as nested loop join).

Give me all objects of type T
that are member of extent E1
and are member of extent E2.

Listing 5.2: Intersection query for members of two extents.

As with queries by attribute values presented in the previous section, queries for collection
membership are nothing special in the world of DBMS. Therefore there is already an index
structure known to accelerate such queries for collection membership: The bitmap index.
The implementation of such indices is planned for the near future of Avon’s development.

5.2 Implementing a B*-Tree

A B-Tree is a data structure known since the early seventies of the twentieth century. B-
Trees are taught in the second semester of computer science studies at ETH during the lecture

www.manaraa.com

CHAPTER 5. INDEXING IN OMS AVON 31

” Algorithms and Data Structures”. The ”plus” version as special case of B-Trees is mentioned
there as well.

B*-Trees are used in DBMS because their fix node size can be set to a value that corres-
ponds to the block size on disk — where the index will be saved persistently. Often, the tree’s
leaves are linked with their neighbours in both directions to facilitate range queries.

Being a search tree, a B*-Trees basic operations are insert, remove and search.

5.2.1 Search

Implementing search is straight forward: Navigating through the inner nodes by comparing
keys and descending towards the leaf containing the desired entry.

5.2.2 Insert

Insertion requires a little more work. Because of the maximum node size defined by the tree’s
order, a node may be too big after insertion. In this case, the node is split and half of the keys
and children are moved to a new node. To separate these two nodes, an additional separator
key must be inserted in the parent node. This can in turn cause the parent to be too big and
therefore propagate splitting upwards in the tree. The tree grows in height if this splitting
process reaches the root and a new root is created.

5.2.3 Delete

Deletion is the trickiest of the three operations to get right when implementing. A good recipe
—and also a nice overview for B*-Trees in general — is given by Jannink in [1]. The essence
of his algorithm is quite simple. If a node becomes too small after deleting from it, there are
two operations to solve the problem:

* Redistributing among neighbours.
If either the node’s left or right neighbour contains more keys than the margin of sub-
sistence, some of this neighbour’s keys (and children if it is not a leaf) can be shifted
to the current node. Then the key in the ancestor node separating the path between the
two nodes has to be updated to reflect the shift.

* Merging with a neighbour.
If both neighbours contain only the minimum number of keys necessary, the node has
to be merged with one of the neighbours. After the merge it is also necessary to remove
a key from or replace a key in the ancestor node. If it has to be removed, this ancestor
node can in turn be too small and therefore deletion must be propagated upwards in
the tree. If this process reaches the root, it will be collapsed and replaced with its only
child left. This means that the tree shrinks in height.

While descending recursively from the root to the leaf where deletion should take place, the
algorithm also keeps track of each node’s neighbours in the tree. This information can then be
used if an underflow occurs after deleting from the leaf to re-balance the tree while unwinding
the recursion.

www.manaraa.com

32 5.2. IMPLEMENTING A B*-TREE

The implementation’s most delicate bits were selecting the correct replacement for the separ-
ating key in the ancestor and shifting the right amount of keys and children to the neighbour
in all cases (merge means shifting all entries).

According to [1], several B*-Tree implementations in DBMS avoid really removing nodes
from the tree due to deletion by performing so-called lazy deletion. This approach never, or
only after a certain time of emptiness, removes nodes from the tree. This is preferable when
optimising the tree for being stored on and retrieved from a hard disk. Removing a node
would introduce the overhead of having to rewrite the structure on disk. If a new node at the
same position in the tree gets allocated again later, the structure must be rewritten again.

To circumvent this constantly changing structure on disk, the implementations using lazy
deletion accept a certain degradation of the tree structure to avoid rewriting the index structure
on disk.

As we do not have any control over how our tree will be stored in db4o, the idea of lazy
deletion was not considered useful for our implementation.

5.2.4 Keys and Values

The simplest collection (and therefore extent) in OMS Avon is the set: It has no ordering
and does not allow duplicate entries. However, we are not using our B*-Tree for indexing
objects in an extent, but merely the object’s attributes. This means that even though the set
does not have to handle duplicates, our index still needs to do it. Suppose we have a person
type that defines a person as having a name and an age. Therefore the two instances of such
a type shown in Listing 5.3 would be perfectly valid. These two instances are truly distinct
and hence adhere to the properties of a set. But at the same time, they both contain the same
value in the name attribute.

personl = {name= , age= }
person?2 {name= , age= }

Listing 5.3: Two instances of a person type containing the same attribute value.

To cope with such duplicate attribute values, our index uses the value itself as key for the
entry. Together with that key it stores a list of object identifiers containing the identifiers of
all objects having the same attribute value.

5.2.5 Testing the Implementation

As it has to be done for all code in OMS Avon, unit tests needed to be written for the B*-
Tree. This task is however not as straight forward, as it may sound. The problem is that one
is lacking access to the tree’s inner workings. After all, such a search tree is an abstract data
type (ADT) who’s actual implementation details should be hidden. Two possible solutions for
this situation would be:

» Using a special Java class loader one could change the visibility of the private methods
inside the tree and make them public. A tree instance loaded with this class loader
could then be tested in the usual way.

www.manaraa.com

CHAPTER 5. INDEXING IN OMS AVON 33

* Teaching the ADT the ability to test itself. This is quite simple for a B*-Tree, because
the data structure is built from a small set of constraints. Running a large amount of
randomised cycles of insert, remove, and search operations with self tests in between
can then show occurring inconsistencies.

The second approach bears the same uncertainty as testing generally bears: If the randomised
tests don’t show any problems this does not mean, that there aren’t any.

However, it is easier to ensure the properties of a B*-Tree than to figure out all the special
cases for each internal operation and constructing a test case for all of them. Therefore the
self-testing approach was chosen and implemented.

Some of the checks implemented to tell whether a tree node is healthy are:

* Checking the order of the keys in the node. They should be ordered ascending.

* Comparing the key- and the child-count. Each key should separate two children. This
means that a non-leaf node containing k keys should have k£ + 1 children.

» Comparing the keys in the children to the keys in the parent. All keys in the child
should be smaller or equal the right key in the parent and greater than the left key in
the parent.

* Checking the next and previous references on the leaf level.

These checks turned out to be a handy tool when tinkering with all the boundary conditions
of deletion.

5.3 Incorporating Indexing into Avon

Having implemented an index structure as outlined during Section 5.2, this structure can now
be incorporated into Avon to — hopefully — benefit from lower execution times for queries.
The integration consists of the following three subtasks:

* Providing the functionality to create and remove indices on the OM layer.

* Maintaining existing indices by subscribing to storage events of the operations dress,
strip, setAttributeValue and setAttributeValues on objects as well as insertion into and
removal from extents.

» Using index accesses instead of the usual selection implementation during query exe-
cution whenever possible.

The index structures themselves are held by the storage layer which is also responsible for
persisting and reloading them.

5.3.1 Managing Indices on the OM Layer

On the OM layer, indices can be created, retrieved and removed. All these operations are
shown in Listing 5.4.

www.manaraa.com

34 5.3. INCORPORATING INDEXING INTO AVON

db.storage () .createIndex (txHandle, indexId, extentId,
objectTypeld, attributePosition);

Index index = db.storage () .getIndex (txHandle, indexId);

Index samelIndex = db.storage () .getIndex (txHandle,
extentId, objectTypeld, attributePosition);

db.storage () .removelIndex (txHandle, indexId);

Listing 5.4: Creating, retrieving and removing indices on the OM layer.

For creating an index, we need the triple of extent, object type and attribute position to know
what should be indexed. Additionally, an identifier for the index itself must be provided.
With this index identifier we can later retrieve the index or remove it from the database. For
retrieving there is also the possibility to provide the same triple as used for creation instead
of the index identifier.

Retrieved indices should only be used to check, whether an index exists or perhaps to get
its current size. Even though the index interface would allow to insert and remove entries as
well as clear the whole index, this should not be done on the OM layer. The maintenance of
indices will be handled automatically on a lower layer, as we will see next.

5.3.2 Index Maintenance with Storage Events

During his master thesis, Christoph Lins implemented an event module for OMS Avon [2].
This module allows us to get notified of different events in the system and to react to them if
necessary.

When opening a storage, we register an event listener with the event system. This listener
will be notified of all events occurring in Avon. As mentioned in the beginning of Section 5.3,
we are interested in the events of the following operations taking place to keep our indices up
to date:

* Dressing an object with a type.
When dressing, values for all the attributes defined by the type have to be provided.
Therefore, we have to add the new values to all existing indices on extents that the
object is part of.

* Stripping an object from a type.
This operation is inverse to the dress-operation. Hence the attribute values belonging
to this type instance have to be removed from the indices they are part of.

www.manaraa.com

CHAPTER 5. INDEXING IN OMS AVON 35

 Setting attribute value(s).
Setting an attribute to a new value means that we have to remove the old value from all
indices and instead insert the new value.

* Adding an object to an extent.
When an object is added to an extent, we have to check for all attributes defined by all
types this object is dressed with, whether there exists an index. If so, we insert the new
value into the index.

* Removing an object from an extent.
Removal from an extent requires the same check for existence of indices as when
adding to an extent. If an index exists, we remove the entry for this object.

Additionally there will be an event of creating a new index. The reaction to this event is to
add already existing members of the extent that have the correct type to the new index.

Our event listener will only react to the events we have just discussed. All other events
that are not relevant for index maintenance are ignored. The listener is therefore called
IndexRelevantStorageEventListener.

5.3.3 The ComparisonIndex Interface

The selection queries intended to be replaced with index accesses are modeled with
the help of the ComparisonPredicate class. Such a predicate contains a
ComparisonOperator and a value to be compared to. The ComparisonOperator
can be one of the following operators: equal, greater, greater or equal, less, less or
equal, not equal, like, in, subset, superset.

Given the right index instance, the predicate therefore contains all information needed to
produce the result of the index access.

The interface derived for indices answering our selection queries reflects this observation.
As shown in Listing 5.5, this ComparisonIndex interface defines only one method. Given
a predicate it will return an iterator for the result set.

public interface ComparisonIndex extends Index {

Iterator result (ComparisonPredicate predicate);

Listing 5.5: The ComparisonIndex interface.

Implementing this interface, our B*-Tree checks the operator in the given predicate to forward
the call to the appropriate method. However, the tree does not support all kinds of operators:
in, subset and superset deal with collections and are not suited for the single values stored
in a tree. The result for all other operations is produced by traversing the tree’s leaf level with
either an entry, exit or filter condition on the keys stored there.

www.manaraa.com

36 5.3. INCORPORATING INDEXING INTO AVON

5.3.4 Modifying the Query Tree

As pointed out in the the overview at the beginning of Section 5.3 we would like to use
existing indices whenever possible to answer selection queries. For ordinary query execution,
first a tree of the query’s operations will be built. An example for such a query tree is shown
on the left in Figure 5.1: This query will return the union of friends at age 26 and movie stars
named Christoph.

IndexAccess IndexAccess
age="26" name="Christoph"

Selection Selection
age="26" name="Christoph"

Extent Extent Index Index
Friends Movie Stars Friends/age Movie Stars/name

Figure 5.1: Example query tree and modification by the Opt imiservVisitor.

Such a tree will be visited by an EvaluatorVisitor to produce the query’s result. The
visiting process starts at the tree’s root. The result for a subtree is calculated by first visiting
the root’s children and producing their results before using these results to produce the result
of the whole subtree at its root. In our example this means that the visitor first evaluates the
two selections on their respective extents and then uses these two results to compute the union
at the query tree’s root.

In order to replace selections where possible, a new OptimiserVisitor was imple-

mented. This visitor also visits all nodes in the tree. But instead of calculating a result, it
looks for Selection nodes. If such a node uses a ComparisonPredicate for an ex-
isting index, the visitor will create a new IndexAccess node with that predicate and put it
at the place of the Selection node in the query tree.
Suppose that we have configured an index for the age attribute on our friends extent and an
another index for the name attribute of the movie stars extent. The OptimiserVisitor
would then modify our example tree to what is shown at the right in Figure 5.1: The two
selection nodes are replaced by index access nodes that each make use of the appropriate
index.

The EvaluatorVisitor was extended with the handling of IndexAccess nodes.
When visiting such a node it will use the predicate to retrieve the result by calling the
ComparisonIndex’s method discussed in Section 5.3.3.

www.manaraa.com

CHAPTER 5. INDEXING IN OMS AVON 37

5.4 Index Performance

In order to measure any changes in performance caused by the introduction of indices in
Avon, we wrote an IndexPerformanceTest. Its scenario is to create one object type
with one attribute and a collection for this object type. It will then insert several objects into
the collection and measure the time taken for this insertion process — once without indexing
and once with an index created on the collection for the object type’s attribute.

The second part is to measure the time taken for running 20 queries on the inserted data —
again, once without and once with an index. Fifty percent of those queries will be for non-
existing attribute values and therefore return empty. The other half will produce a non-empty
result set. Running the test with an object count of 100, 200 and 400 lead to the results shown
in Table 5.1 and Figure 5.2.

Execution Time [s]

Object Count Insertion Querying without Index Querying with Index

100 23.6 22.8 3.1
200 84.3 100.8 5.7
400 330.1 884.6 13.6

Table 5.1: Results of IndexPerformanceTest.

900
~#=Insertion /
800 || <#-Query No-Index
Query Index /

700

600

500

400

) [
/

100

Execution Time [s]

100 200 400

Number of Objects

Figure 5.2: Results of IndexPerformanceTest (plot of Table 5.1).

The first thing to note is that in fact our work on the index paid off in query execution time.
With 100 objects the time taken for 20 queries drops from around 23 seconds without index
to about 3 seconds when using an index. At 400 objects the gap widens to 884 versus 13
seconds.

www.manaraa.com

38 5.4. INDEX PERFORMANCE

Insertion performance does not show any difference between having an index configured
or not (hence only one graph for insertion in the figure). Even totally deactivating any index-
related code in Avon — that would be the IndexRelevantStorageEventListener
and the Opt imiserVisitor — does result in the same insertion time. This does not mean
that our implementation of index maintenance is extremely optimised. It is merely due to the
fact that the rest of Avon performs so poorly that the additional overhead is just not visible.

The overall poor performance is clearly visible in Figure 5.2: All three curves plotted
grow exponentially when linearly increasing the object count. This implies that there is some
intrinsic flaw in Avon’s implementation which remains to be investigated in the future.

www.manharaa.com

Conclusions and Outlook

The work for this thesis comprises two major parts. The first one is the optimisation of Avon’s
db4o-based storage implementation. Having completed the thesis’ original topic gave way to
the second part of enriching Avon’s query processing with the ability of using index accesses
to boost performance.

Redesigning the db4o-based storage implementation resulted in considerable performance
improvements. This was accomplished by identifying weaknesses in db4o’s handling of col-
lections and arrays and introducing a new design that works around these problems.

Indexing based on B*-Trees and bitmap indices is an entry that already existed on the list
of wanted features in Avon. There have been attempts of completing this task before, but
none of them proved successful. The implementation of B*-Trees used for the acceleration
of selection queries by attribute value provided in this thesis can therefore be regarded as a
successful tracer bullet for the whole task: It shows that the task is feasible and prepared the
system for the full implementation.

Working on both parts provided insight into and understanding of many core concepts of
the complex system that OMS Avon is. During the work, several ideas on how to further
improve some of Avon’s parts came up. These ideas are the topics of the following sections.

6.1 Unifying Checking
In the beginning of Chapter 4 we set forth the numerous checking mechanisms in Avon as
one possible factor for performance issues. As we noted at the end of the same chapter,

these checks have remained unchanged to a great extent and that they probably were bearing
additional optimisation potential.

39

www.manaraa.com

40 6.2. SEPARATING TYPING AND CLASSIFICATION IN INDEXING

On the other hand, when analysing index performance in Section 5.4, we noted the unex-
pected exponential growth in execution time for a linearly growing object count. It is our
educated guess, that the checks also played a crucial role in this behaviour.

At the moment, checks are executed at different levels in Avon. Moreover, different stor-
age implementations perform different checks and throw exceptions on different occasions
or with different messages. It is therefore favorable to factor out all checks into a dedicated
checking package, positioned above the different storage implementations in Avon’s archi-
tecture. This would ensure that, no matter what storage implementation is used, the system
will always execute the same checks and throw the same exceptions.

Once factored out, the checking code could then be made configurable. One can imagine
different levels of checking being enabled through this configuration. A simple switch for
selecting all checks on or all checks off will then provide insight on the impact on performance
all the checks have.

Should one in fact find that the checks spoil the system’s performance to a considerable
amount, it would be a viable option to speed-up the checks by caching information above
the storage layer. Again, by having caches only above the storage, they will be available and
work the same no matter what storage implementation is used.

6.2 Separating Typing and Classification in Indexing

In Section 5.3.2 we presented a list of events that are of interest for index maintenance. For
the event of dressing an object with a type, we noted that all existing indices on extents that
the object is part of possibly have to be updated. Compared to how indexing works in db4o,
this is a considerable additional amount of work since db4o only has indices per type (class)
and attribute (no additional extent-dimension).

The need for this additional amount of work stems from the fact, that OM separates typing
and classification, while Java and therefore db4o do not. In the current implementation, this
separation has not been applied to the index structures. If we had in addition to the B*-Trees
also bitmap indices available, we would be able to perform the separation also in indexing
and therefore remove a part of the work for updating indices. This would be accomplished
by having B*-Tree indices per type and attribute just like in db4o. The additional extent
dimension will then be handled with bitmap indices on the extents.

In this setting, a dress operation means that we only have to update the B*-Trees for the new
type’s attributes — we do no longer have to care for extents. However, evaluating a selection
query by attribute value on an extent (Listing 5.1) can then no longer be done by just one index
lookup. The result must now be calculated by evaluating the ComparisonPredicate on
the B*-Tree and then intersecting the resulting list of object identifiers with the bitmap index
on the target extent.

www.manaraa.com

CHAPTER 6. CONCLUSIONS AND OUTLOOK 1

As it is already planned to implement bitmap indices in Avon in the near future, the basis for
this proposed separation of typing and classification for indexing would already be provided.
Changing the use of B*-Trees to the new setting is a short task that mainly requires removing
code that is no longer needed.

6.3 Continuous Performance Testing

In Section 4.5 we observed that changing the version of the underlying persistence provider
of the storage layer can have a noticeable impact on the overall performance of Avon: By
moving from db4o version 7.4.71 to 7.8.82 we experienced a noticeable performance drop.

In order to automatically detect such changes or to prevent gradual performance degrada-
tion during further development of the system, it would make sense to have performance tests
as part of the continuous build system. Within these tests, one would have to define limits for
a performance minimum. If the system turns out to be slower than this minimum, a warning
should be issued to the developers.

6.4 ASidenote on Implementing B*-Tree Deletion

As it was mentioned in Section 5.2.3, deletion is a B*-Tree’s most challenging operation
implementation-wise. Trying some examples by hand revealed several cases of problems that
can occur. We were however not sure to have identified all possible cases and their solutions.
Consulting some text books, we tried to find a pseudo-code recipe for the implementation of
deletion. One of the standard readings on the topic of data structures [3] has a chapter about
B-Trees but mentions the existence of B*-Trees just in one sentence. A publication about
the fundamentals of database systems [4] offered a discussion of B*-Trees, including pseudo-
code for insert and search operations. With regards to deletion, however, even this book only
states that it is a tricky operation and shows two graphical examples, but no pseudo-code. !

Locating information about deletion in B*-Trees on the web also bears its problems:
Querying a search engine for "B+Tree” actually brings up information about B-Trees, but
not the desired “’plus” version. The problem is that this query is interpreted by the search
engine as looking for documents containing 'b’ and ’tree’. To circumvent this limitation re-
garding the ”+”-character, people writing about B*-Trees on the web resorted to using the
term ’bplus tree’ or "bplustree’ instead. Searching for these terms finally yielded the desired
information.

As it turnes out — and as it was to be expected — other people before noticed the lack of
pseudo-code for deletion in B*-Trees in the standard text books. But it was not until 1995
that this was addressed in a publication. Jannink filled this gap with his paper, where he
presented a flowchart as well as complete pseudo-code in procedural C style for the deletion
from B*-Trees [1]. Translating his pseudo-code to an implementation in Java took some time,
but finally provided us with a working deletion algorithm.

"We later discovered that with [5] a text book containing pseudo-code for deletion exists.

www.manaraa.com

42 6.4. ASIDENOTE ON IMPLEMENTING B*-TREE DELETION

www.manharaa.com

Tables

www.manharaa.co

44

Execution Time [ms]

Subtask old awesome 1.0 awesome 2.0
Retrieving type ’string’ 1 0 0
Creating attribute of type ’string’ 0 1 2
Creating set of ’string’ 267 157 84
Creating attribute of type ’set of string’ 0 0 0
Creating object type declaring two attributes 405 173 69
Creating object 49 25 5
Dressing object with object type 456 278 100
Creating 2 attribute values 0 1 0
Setting attribute of type ’string’ 133 61 19
Setting attribute of type ’set of string’ 154 70 10
Retrieving attribute of type ’string’ 115 52 15
Retrieving attribute of type ’set of string’ 161 77 17
Creating collection 1198 640 278
Retrieving collection extent 38 17 29
Adding member to collection extent 9 5 2
Removing member from collection extent 1 1 0
Creating another object type declaring O attributes 388 133 46
Creating another object 46 41 5
Dressing other object with other object type 459 243 74
Creating another collection 1216 648 338
Retrieving extent of other collection 40 27 5
Adding object to collection extent 9 5 1
Adding other object to other collection extent 8 7 2
Creating cardinality 0 0 0
Creating association (creating relation collection as side effect) 1578 826 175
Retrieving relation collection 9 2 1
Retrieving relation collection extent 49 22 5
Creating relation collection member 0 0 0
Adding member to relation collection extent 0 0 1
Total time elapsed 6789 3512 1283

Table A.1: Execution times measured by OMPerformanceTest using dbd4o-old, dbdo-
awesome 1.0 and db4o-awesome 2.0.

www.manaraa.com

List of Figures

2.1 Ascreen-shot of JProbe’s performance analysis. 8
3.1 Graphical representation of a part of OM’s core meta-model. 10
3.2 High-level view of Avon’s architecture. 11
4.1 Aplotof the numbers fordbgo-oldin Table Aa. 16
4.2 Example for the use of type descriptors and information units. 17
4.3 Datamodelatthestoragelayer. 18
4.4 Implementation of the data model indbgo-old. 19
4.5 Redesigned implementation of the data model in dbgo-awesome. 21
4.6 Aplot of the numbers for dbgo-old and awesome1.0in Table A1. 22
4.7 Redesign of the association between StorageOject and
ExtentValueHandle to avoid the use of collections. 22
4.8 AplotofthenumbersinTableA1.. 26
51 Example query tree and modification by the Opt imiservVisitor. ... 36

5.2 Results of IndexPerformanceTest (plotof Tablesa). 37

45

www.manharaa.com

46 LIST OF FIGURES

www.manharaa.com

List of Tables

4.1 Execution times measured by OMPerformanceTest using different
dbgoversions. 26

5.1 Results of IndexPerformanceTest. 37

Aa Execution times measured by OMPerformanceTest using dbgo-old,
dbgo-awesome 1.0 and dbgo-awesome2.0. 44

47

www.manharaa.com

48 LIST OF TABLES

www.manharaa.com

Acknowledgements

I thank my supervising assistant Alexandre de Spindler for supporting me, whenever I needed
it, and for letting me do what I wanted otherwise. Dr. Michael Grossniklaus also earned my
gratitude for in depth and behind the scenes information on and around OMS Avon. Thanks
also to Carl Rosenberger and the whole db4o developer team for insight into db4o and the
lessons in real life software engineering I learned during my internship with the team. Last
but not least I thank Professor Norrie for mentoring my studies and providing a group of
people and an environment that allowed this thesis being interesting and enjoyable to me.

49

www.manharaa.com

http://www.vis.ethz.ch/content/6_Visionen/scripts/extract_page.php?year=2004&nr=2&page=44

www.manharaa.com

Bibliography

[1] Jan Jannink. Implementing Deletion in B+-Trees. SIGMOD Rec., 24(1):33-38, 1995.
[2] Christoph Lins. Event-based Information Sharing. Master thesis, ETH Zurich, 2009.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. MIT press, 2001.

[4] R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Addison-Wesley
Reading, Mass, 2000.

[5] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill Sci-
ence/Engineering/Math, 2003.

51

www.manharaa.com

	Title
	Contents
	1 Introduction
	1.1 Document Structure

	2 Analysing the Performance of a Complex System
	2.1 Counting Method Executions
	2.2 Measuring Method Execution Time
	2.3 Profiling

	3 OMS Avon
	3.1 The OM Data Model
	3.1.1 Collections
	3.1.2 Associations

	3.2 Avon Architecture
	3.2.1 The Model Layer
	3.2.2 The Storage Layer

	3.3 db4o
	3.3.1 Query Interfaces
	3.3.2 Transparent Persistence and Activation

	4 Accelerating Avon's db4o-based Storage Module
	4.1 The OMPerformanceTest
	4.2 Representing Data at the Storage Layer
	4.2.1 The Meta-Model
	4.2.2 Representing Data – The Java-Approach
	4.2.3 Representing Data – The db4o-Approach

	4.3 Redesigning Extents
	4.4 Getting Indexing to Work
	4.4.1 Indexing and Interfaces

	4.5 db4o-awesome 2.0
	4.6 Conclusions

	5 Indexing in OMS Avon
	5.1 Example Queries
	5.1.1 Selection Queries by Attribute Values
	5.1.2 Queries for Collection Membership

	5.2 Implementing a B+-Tree
	5.2.1 Search
	5.2.2 Insert
	5.2.3 Delete
	5.2.4 Keys and Values
	5.2.5 Testing the Implementation

	5.3 Incorporating Indexing into Avon
	5.3.1 Managing Indices on the OM Layer
	5.3.2 Index Maintenance with Storage Events
	5.3.3 The ComparisonIndex Interface
	5.3.4 Modifying the Query Tree

	5.4 Index Performance

	6 Conclusions and Outlook
	6.1 Unifying Checking
	6.2 Separating Typing and Classification in Indexing
	6.3 Continuous Performance Testing
	6.4 A Sidenote on Implementing B+-Tree Deletion

	A Tables

